
Army of Juniors: 
The AI Code Security Crisis
How 10 critical anti-patterns in AI-generated
code are systematically undermining software
security at scale

OX Research | October 2025

Eyal Paz

01. A Note from OX Research

02. Executive Summary: AI is Fast, Eager & Lacking Judgment

Key Findings

03. The 10 Critical Anti-Patterns of AI-Generated Code

04. Introduction: The Productivity Trap

Methodology

05. The 10 Critical Anti-Patterns of AI-Generated Code

1. Comments Everywhere | Note to Future AI Self

2. Avoidance of Refactors | The Missing ‘Who Wrote This Sh*t?’ Reflex

3. Over-Specification | Dispose-After-Use Code

4. The Return of the Monoliths | Throwing Micro-Services Out the Window

5. The Lie of Unit Test Code Coverage | Quantity Does Not Equal Quality

6. Phantom Bugs | When Machines Experience “Skin-Crawling”

7. Vanilla Style | From Scratch, Whether You Like It or Not

8. Bugs Déjà-Vu | Patch, Re-Patch, and Patch Again

9. It Worked On My Machine Syndrome | Production is a Bitch

10. By-The-Book Fixation | Excellent Replicators, Terrible Innovators

06. Anti-Patterns’ Occurrence Rates

07. Anti-Patterns Vs Best Practices

08. Takeaways: What Does This Mean for AI-Assisted Development?

The Great Developer Evolution: From Coder to Architect

The Critical Knowledge Gap: What Bots Can't Find

09. Security Impact: Insecure by Dumbness

10. Conclusion: Harness Human Creativity, Execute with AI Efficiency,  
 Secure at Scale

11. Strategic Imperatives

For AI-Coding Adoption

For AI-Coding Security

12. Expert Perspectives: Industry Voices on “Army of Juniors”

02

03

03

04

05

06

07

07

09

10

11

12

14

15

16

17

18

19

20

21

21

21

22

24 

24

24

24

25

Table of Contents

www.ox.security OX October 2025 | 01

https://www.ox.security/

www.ox.security OX October 2025 | 02

A Note from OX Research
In early 2025, as AI coding tools accelerated from curiosity to standard practice,

organizations faced a question no one could answer: How do you secure code that's

generated faster than humans can review it?

The industry's response was predictable: "Scan more. Detect more." But we suspected this

couldn't be the answer.

As we witnessed the industry changing rapidly, we set out to better understand AI-

generated code. Was it more flawed than human-written code? We (humanly) analyzed

over 300 repositories: 50 explicitly built with AI coding tools, 250 human-coded baselines.

What we found wasn't what we expected.

We identified 10 critical anti-patterns in AI-generated code that revealed how AI

fundamentally approaches problems. However, the vulnerability density per line of AI-

generated code was similar to human code. The crisis wasn't code quality.

It was deployment velocity.

AI tools had removed every natural bottleneck that previously controlled what reached

production. Traditional security—code review, shift-left scanning, post-deployment detection

—couldn't scale to match. Even before AI adoption, organizations were already drowning—

according to OX research, dealing with an average of 569,000 security alerts at any given

time. Teams were overwhelmed before AI. Now, how could security possibly keep up?

The conclusion was inescapable: detection-led security is collapsing.

This research revealed that traditional security approaches fundamentally cannot keep pace

with AI-generated code velocity. The 10 critical anti-patterns we identified, combined with the

"insecure by dumbness" phenomenon, made it clear that security needed to evolve from

reactive scanning to proactive, embedded intelligence.

Launched in September 2025, VibeSec represents our response: security embedded directly

into coding workflows, preventing vulnerabilities before they exist rather than chasing them

after deployment.

The following report documents what we found - and why it matters.

— OX Research Team, October 2025

https://www.ox.security/

www.ox.security OX October 2025 | 03

Executive Summary: AI is Fast,
Eager & Lacking Judgment
Software development has entered uncharted

territory. For the first time in computing history,

functional applications can be built faster than

humans can properly evaluate them.

Our analysis of 300+ repositories reveals

that AI-generated code behaves like an army

of talented junior developers - fast, eager,

but fundamentally lacking judgment.

Key Findings

1 AI-generated code exhibits 10 distinct

anti-patterns that directly contradict

established software engineering

best practices, systematically

compromising long-term

maintainability, security, and scalability

2 Vulnerability density per line mirrors

human code, but deployment velocity

has accelerated exponentially

3 Non-technical users are shipping

production systems without security

expertise, creating applications that are

"insecure by dumbness"

4 Organizations face a critical choice:

adapt development practices or face a

wave of technical debt and security

incidents

The Real Crisis
The problem isn't that AI writes worse code - it's

that vulnerable systems now reach production

at unprecedented speed. Breaches at Replit,

Lovable, and Tea App demonstrate this pattern

materializing: developers using AI tools to rush

applications to market without understanding

fundamental security principles, exposing

thousands of users to preventable risks.

Code Review Cannot Scale
Organizations must fundamentally restructure

development roles. AI should handle

implementation while humans focus on

architecture, orchestration, and security

oversight. Traditional code review cannot

scale with AI's output velocity - instead,

organizations need threat modeling, security

guardrails embedded in AI workflows, and

emerging solutions like AI-powered

autonomous vulnerability remediation.

The transformation is accelerating.

Organizations that fail to adapt will either fall

behind competitively or drown in the technical

debt and security incidents that AI's speed

makes inevitable.

Next: The 10 Critical Anti-Patterns of AI-Generated Code

https://www.ox.security/

www.ox.security OX October 2025 | 04

The 10 Critical Anti-Patterns of AI-Generated Code

Anti-Pattern Core Issue Root Cause Primary Impact

Comments Everywhere
| Note to Future AI Self

Excessive inline

commenting beyond
human norms

Memory architecture
limitations; comments as
AI navigation

"breadcrumbs"

Internal AI tool, rather than
human documentation, reveals
model constraints

Avoidance of Refactors
| Missing 'Who Wrote
This?' Reflex

No instinctive code

improvement process

Focus on immediate
solutions vs. long-term
quality; lacks semantic
understanding

Technical debt accumulation;
missed optimization opportunities

Over-Specification |

Dispose-After-Use
Code

Hyper-specific solutions
lacking generalization

Training on pattern

replication vs. abstract
principles; knows "what",
not "why"

Fragmented codebase; difficult
maintenance and evolution

Return of Monoliths |
Throwing Microservices
Out

Consolidated structures
over distributed

architectures

Problem simplification +
refactoring avoidance

Compromised scalability and
modern architectural practices

Unit Test Coverage Lie |
Quantity ≠ Quality

High coverage numbers,
questionable test quality

Speed enables rapid test
generation; inflated
metrics

False confidence;

coverage doesn't guarantee
robustness

Phantom Bugs |
Machine "Skin-
Crawling"

Over-concern with

theoretical edge cases

AI hallucination applied
to code complexity

Performance degradation;
resource waste; bloated

applications

Vanilla Style | No

Dependencies, No

Patches

From-scratch

implementation over
library usage

Preference for bespoke
code vs. open-source
leverage

Positive: Reduced dependency
risks, leaner codebases

 Reinventing wheels,
missing community-tested
solutions, potential security
vulnerabilities

Negative:

Bugs Déjà-Vu | Patch,
Re-patch, Patch Again

Recurring identical bugs
across codebase

Lack of code reuse leads
to redundant

implementations

Inefficient fixing cycles; degraded
user experience

"Worked on My
Machine" | Production
is a Bitch

Dev environment

success, production
failures

Limited awareness of
deployment environme
nts and constraints

Environmental bugs surface only
at deployment

By-the-Book Fixation |
Excellent Replicators,
Terrible Innovators

Strict adherence to

conventions over optimal
solutions

Training on conventional
patterns; rule-bound
programming

Consistent but potentially
suboptimal results; requires
human guidance for innovation

https://www.ox.security/

www.ox.security OX October 2025 | 05

Introduction: The Productivity Trap
Software development has crossed a threshold,

becoming a pioneering industry in AI adoption.

Unlike heavily regulated sectors such as

transportation, aviation, pharmaceuticals, or

financial services - where safety requirements

and compliance frameworks slow technology

integration - software engineering faces

minimal barriers to AI implementation.

Generative AI has eliminated the natural

bottlenecks that previously controlled code

quality: human typing speed, debugging time,

and implementation complexity.

The result is unprecedented: applications

can now be conceived, built, and

deployed faster than human judgment

can properly evaluate them.

Our analysis of over 300 repositories, 50

explicitly built using AI coding platforms

compared against 250 human-coded

baselines, reveals a consistent pattern.  

AI-generated code exhibits the

characteristics of talented junior developers:

highly functional, syntactically correct, but

systematically lacking in architectural

judgment and security awareness.

This creates a deceptive productivity trap.

Teams see applications running successfully

and assume they're production-ready, while

critical questions remain unaddressed: How is

authentication implemented? What data is

being stored and how is it protected? Which

endpoints are exposed to the internet? The

harsh reality is that no AI model currently

generates consistently secure code, yet

nothing prevents these systems from

reaching users.

The stakes extend beyond individual

organizations. We're witnessing the emergence

of a generation of applications built by non-

technical users wielding AI tools without

corresponding expertise development. The

resulting software isn't insecure by malicious

design, it's insecure by ignorance, creating

systemic risks that scale with AI's deployment

velocity.

This report examines how organizations can

harness AI's unprecedented speed while

avoiding the security avalanche that

uncontrolled adoption makes inevitable.

Next: Methodology

https://www.ox.security/

www.ox.security OX October 2025 | 06

Methodology
This investigation began as one researcher's

curiosity about AI-generated code quality in an

era where few people examine the underlying

code - and not as an academic standards-

based study. We combined direct code

examination with developer conversations,

prioritizing pattern recognition over statistical

validation.

Repository Selection
We examined over 300 open-source

repositories through old-fashioned human

code review. Of these, 50 explicitly mentioned

AI coding tools (GitHub Copilot, Cursor,

Claude) in documentation or commits, while

the remaining 250+ served as our comparison

baseline. This approach captures only projects

where developers disclosed AI usage, creating

potential selection bias toward developers

comfortable advertising their AI tool adoption.

Baseline Comparison
For context, we reviewed repositories created

before widespread AI tool adoption (pre-2022).

This temporal comparison helps distinguish  

AI-specific patterns from general trends,

though older code may reflect different

practices regardless of AI involvement.

Language Scope
Primary analysis focused on JavaScript

and Python, with validation across Go,

Dart, and Kotlin.

Developer Insights
Informal conversations with senior developers

provided context for interpreting code patterns

and understanding practical implications.

Next: The 10 Critical Anti-Patterns of AI-Generated Code

https://www.ox.security/

www.ox.security OX October 2025 | 07

The 10 Critical Anti-Patterns
of AI-Generated Code
Each of the following behaviors represents a

violation of fundamental software engineering

principles that the industry has spent decades

establishing - code reuse, continuous

improvement, Test-Driven Development, and

architectural patterns like microservices. AI-

generated code systematically undermines

these practices that ensure maintainable,

scalable, and secure software. These aren't

merely "different approaches" - they're

regressions to patterns the industry deliberately

moved away from.

1 Comments Everywhere
| Note to Future AI Self
Cluster: AI-Specific
Behaviors & Code Quality
Occurrence Rate: Critical (90-100%)

One of the most striking and, at times,

perplexing characteristics of code generated by

modern GenAI models is the sheer abundance

of redundant comments. Unlike human

developers, who typically reserve extensive

commenting for intricate algorithms, critical

business logic, or foundational boilerplate,

GenAI models embed comments with a

frequency that often feels excessive, like an

overeager student annotating every line of their

first programming assignment. This

phenomenon might lead some human

observers to conclude that the

GenAI is simply being helpful, a benevolent

digital assistant striving for clarity and

maintainability. However, such an interpretation

misses the underlying mechanistic imperative

driving this behavior.

The true impetus behind the copious

commenting lies in a fundamental

architectural limitation and an inherent "pain

point" of current GenAI models: their

struggle with efficient and scalable long-

term memory, particularly within the confines

of their growing context windows. While the

capacity of these context windows – the

amount of information a model can process

and "remember" at any given time – has

expanded dramatically, this expansion comes at

a significant cost.

As the context window increases, so too

does the computational burden, leading to

slower inference times and substantially

higher operational expenses.

In this light, the seemingly superfluous

comments transform into a crucial navigational

and organizational tool for the GenAI itself.

They function as a sophisticated "bread

crumbs" system within the generated code.

Imagine a GenAI model as a brilliant, yet
inherently forgetful, explorer navigating a
vast and complex forest of code. Without
these regular markers, the model would be
forced to rely on an exhaustive

https://www.ox.security/

www.ox.security OX October 2025 | 08

Next: Avoidance of Refactors | The Missing 'Who Wrote This Sh*t?' Reflex

re-reading of the entire "forest" every time it
needed to revisit or modify a specific
section of code.

This complete re-processing is analogous to
human memorization, a process that is
computationally intensive and inefficient for
large language models.

By scattering comments every few lines, the
GenAI creates internal anchors. These
comments act as concise summaries or
signposts, allowing the model to quickly "get
back" to a specific point in the code and
understand its immediate context without
having to load and parse an enormous, ever-
expanding context window from scratch. This
strategy makes the model significantly more
"lean" in its operational footprint. It reduces the
dependence on a massive, expensive context
window by providing readily accessible, high-
level summaries of code segments.

This allows the model to work more efficiently,
maintaining its ability to understand and
manipulate complex code structures even as
the overall codebase grows, without incurring
the prohibitive costs associated with constantly
expanding its "active memory."

In essence, the comments are not primarily
for human consumption, though they
certainly aid human readers. Instead, they
are a testament to the internal workings of
GenAI, a clever workaround for their current
limitations in long-term, scalable memory.

The 10 Critical Anti-Patterns of AI-Generated Code > Comments Everywhere | Note to Future AI Self

if () {
return null

final
final [] as
final [as]

) {
return null

final ()
[]

return

static

return []

static void
()

 result.isEmpty

 ;

}

 row = result.first;

 userId = row 0 String;

 userType = UserType.values row 1 int ;

userType != expectedUserType

 ;
}

 sessionToken = _generateSessionToken ;

_activeSessions sessionToken = userId;

 sessionToken;

 String? getUserIdFromSession String sessionToken

 _activeSessions sessionToken ;

}

 logout String sessionToken

 _activeSessions.remove sessionToken ;

// Invalid credentials

// Check if user type matches expected type
if (

// Wrong user type for this login page

// Generate and store session token

// Get user ID from session token

// Logout user

[]

}

()
{

() {

}

Typical TypeScript code generated by GenAI, where an excessive
amount of comments have been added to the codebase.

https://www.ox.security/

www.ox.security OX October 2025 | 09

2 Avoidance of Refactors
| The Missing 'Who
Wrote This Sh*t?' Reflex
Cluster: Development
Process
Occurrence Rate: High (80-90%)

Every seasoned developer who steps into an

intricate, pre-existing software project often

finds themselves grappling with a universal,

existential question: "Who wrote this sh*t?" This

initial sentiment quickly morphs into an all-

consuming mission: to convince the team that

a complete refactoring is not just beneficial,

but absolutely essential. This drive leads to

radical redesigns, framework upgrades, or

complete language overhauls.

This human inclination towards continuous

improvement, this relentless pursuit of cleaner,

more efficient, and ultimately more maintainable

code, stands in stark contrast to the current state

of GenAI-generated code. GenAI-generated

code largely bypasses this crucial process.

The fundamental divergence lies in their
respective objectives: Humans strive for
elegance, scalability, and long-term
viability, constantly refining their work to
achieve these ideals. GenAI, on the other
hand, is primarily geared towards
producing a functional solution based on
the immediate prompt.

Its output is a direct response to a given

instruction, optimized for the present moment

rather than anticipating future modifications or

optimizations. This inherent lack of foresight

means that while the code may work, it often

lacks the architectural integrity and structural

coherence that human developers painstakingly

build in.

Furthermore, GenAI's "understanding" of code

structure is largely confined to syntax. It

comprehends the rules of the language and can

construct syntactically correct code, but it lacks

the deeper, semantic comprehension that allows

human developers to grasp the underlying intent,

the potential for refactoring, or the implications of

design choices on future maintainability. It doesn't

inherently "understand" the why behind design

patterns or the long-term benefits of abstraction.

While the rapidly growing landscape of AI tools

includes utilities designed to assist GenAI in

refactoring, this capability is not yet an intrinsic

component of its fundamental generation process.

The current paradigm still sees GenAI as a

powerful, yet somewhat blunt, instrument for initial

code generation, leaving the critical, iterative

process of refinement and optimization largely in

the hands of human developers. This means that

the familiar lament of "Who wrote this sh*t?" is

likely to echo in the halls of software development

for the foreseeable future.

Next: Over-Specification | Dispose-After-Use Code

https://www.ox.security/

www.ox.security OX October 2025 | 10

3 Over-Specification |
Dispose-After-Use
Code
Cluster: Code Architecture
& Design
Occurrence Rate: High (80-90%)

Human developers instinctively seek generalized

solutions: identifying patterns, abstracting them

into reusable components, and designing

algorithms applicable across similar situations.

This pursuit of generalization creates frameworks,

libraries, and design patterns that enhance

efficiency and reduce redundant effort.

GenAI does the opposite. It focuses intensely on

the specific problem in the prompt, generating

highly tailored code that addresses precise

constraints. While this ensures immediate

functionality, it comes at the cost of broader

applicability. The resulting code rarely generalizes

to different contexts or even subtle variations of

the original problem.

In data science, this is called overfitting -
when a model learns training data too well,
including its noise and outliers, resulting in
poor generalization.

The practical impact is severe: GenAI generates

proliferating, isolated code snippets. Each minor

deviation requires entirely new code rather than

adapting existing solutions. The codebase

becomes fragmented, difficult to maintain, and

increasingly burdened by technical debt. Simple

parameter changes that a human would make to

a generalized function instead require complete

re-generation cycles.

The root of this behavior can be traced back to

the foundational training paradigms of current

GenAI models. These models are trained on

colossal datasets of existing code, where the

primary objective is to learn the statistical

relationships between input prompts and

corresponding functional code. The emphasis

during training is heavily placed on generating

correct and immediately functional code for

explicit requests. The models excel at pattern

recognition and replication within the bounds of

their training data. However, this process does

not inherently instill a deep understanding of the

transferable principles, abstract concepts, or

underlying architectural patterns that human

developers consciously employ for generalization.

The "why" behind the code – the design rationale

for reusability and scalability – is not explicitly

learned or prioritized in the same way as the

"what" (the functional output).

While GenAI rapidly solves well-defined, specific

problems, this limitation presents a significant

hurdle for complex, evolving systems that demand

adaptable and reusable codebases.

Next: The Return of the Monoliths |

Throwing Micro-Services Out the Window

https://www.ox.security/

www.ox.security OX October 2025 | 11

4 The Return of the
Monoliths | Throwing
Micro-Services Out the
Window
Cluster: Code Architecture
& Design
Occurrence Rate: Medium (40-50%)

The software industry spent the last decade moving
away from monolithic architectures - where UI,
business logic, and data layers are tightly integrated
into a single unit - toward microservices. This shift
was driven by scalability demands and the need for
independent deployment of components.

Microservices allow large applications to be broken
into small, independent services, each handling a
specific business capability. The benefits are
significant: individual services can scale
independently, teams can deploy features without
rebuilding entire systems, and failures are isolated.
Monolithic architectures, by contrast, require
rebuilding and redeploying everything for any
change, creating deployment risks and slowing
development cycles.

AI-generated code systematically reverses this
progress. By simplifying complex problems
and avoiding refactoring, AI coding agents
inadvertently trap development teams in
monolithic architectures - a serious concern
for any project requiring scalability.

Our experimentation with "vibe coding" a Dart web
application using GitHub Copilot demonstrated this
pattern clearly. Over several hours, the application
became remarkably feature-rich, but new features
progressively took longer to integrate. The AI coding
agent never suggested refactoring. The result: a
monolithic architecture where backend, frontend,
data access layer, and API integrations were tightly
coupled within a single application.

A human developer would typically decompose such
a system into distinct microservices for better
modularity, scalability, and maintainability. While the
AI-generated version was fully functional end-to-
end, it presents significant challenges for future
development, debugging, and scaling due to its
tightly integrated structure.

Perfect! The review functionality has been successfully implemented and integrated
into the PawConnect dog walker app.

Here’s a summary of what was accomplished:

 Review System Implementation Complete

What was added:

1. Backend Components:

lib/models/review.dart - Review data model with JSON serialization

lib/services/review_service.dart - Business logic for review operations

Review API endpoints in server.dart

2. Frontend Components:

Review submission modal in JavaScript

Star rating UI components

Review display functionality

Enhanced CSS styling for review elements

3. API Endpoints:

POST /api/reviews – Create new review

GET /api/reviews/walker/<walkerId> – Get reviews for a walker

GET /api/reviews/stats/walker/<walkerId> – Get walker review statistics

GET /api/reviews/owner/<ownerId> – Get reviews by owner

GET /api/reviews/booking/<bookingId> – Get review for specific booking

GET /api/reviews/can-review/<ownerId>/<bookingId> – Check review eligibility

GitHub Copilot summary of a coding assignment he received. Notice the
monolithic nature of the repo, combining Dart and JavaScript for
backend and frontend.

Next: The Lie of Unit Test Code Coverage |

Quantity Does Not Equal Quality

https://www.ox.security/

www.ox.security OX October 2025 | 12

Next: Phantom Bugs | When Machines Experience "Skin-Crawling"

5 The Lie of Unit Test Code Coverage |
Quantity Does Not Equal Quality
Cluster: Development Process
Occurrence Rate: Medium (40-50%)

Unit test code coverage has become a standard metric for assessing software project

maturity. Open-source projects prominently display coverage percentages as proof of

reliability and trustworthiness. GenAI coding agents are specifically engineered to achieve

the highest possible coverage numbers, often highlighting these impressive figures in their

summary reports. The problem is: high coverage numbers don't guarantee quality,

security, or correct logic.

Coverage merely indicates that code was executed during testing - not that it was tested

meaningfully. The efficacy of unit tests depends entirely on the comprehensiveness of edge

cases and scenarios, not the percentage of lines executed.

GenAI's speed creates a deceptive advantage: it can rapidly generate massive quantities of

test code, inflating coverage metrics effortlessly. Human developers, constrained by time,

strategically focus testing efforts on critical, high-risk functionality. GenAI simply generates

volume.

We encountered JavaScript projects where test files outweighed code files by 10:1.

Upon examination, the tests were nonsensical. One striking example: tests that loaded the

code file as plain text and merely checked for the presence of a specific comment string.

While technically a "test," this provides zero assurance of correctness or reliability.

Such tests create false security, inflate project size, and shift focus from validating logic to

superficial content checks - ultimately undermining codebase integrity.

https://www.ox.security/

www.ox.security OX October 2025 | 13

import from
import from
import from
import as from
import

from

const

const

if

const

export const

export

export const async
await

 { drizzle } ;

 postgres ;

 env ;

 * tables ;

 {

 getConnectionConfig,

 validateDatabaseConfig,

} ;

 databaseUrl = env.DATABASE_URL;

 connectionConfig = ();

 (process.env.NODE_ENV ===) {

 ();

}

 sql = (databaseUrl, connectionConfig);

 db = (sql, { : { ...tables }
});

 { sql };

 = () => {

 sql. ({ : });

};

"drizzle-orm/postgres-js"
"postgres"

"@/env"
"./tables"

"@/lib/database/connection"

"development"

// Use unified database URL

// Get environment-appropriate connection
configuration

// Validate and log configuration in development

// Set up the SQL client with dynamic configuration

// Initialize the database with drizzle and schema

// Export the sql client for direct queries if needed

// Graceful shutdown function for cleanup

getConnectionConfig

validateDatabaseConfig

postgres

drizzle

closeDatabase
end

schema

timeout 5

index.ts

import from
import from
import from

const

true

const

const

const

const

const

 { describe, it, expect } ;

 fs ;

 path ;

(, () => {

 (, () => {

 (

, () => {

 dbPath = path. (__dirname,  
 " ");

 (fs. (dbPath)). ();

 content = fs. (dbPath,  
 " ");

 (content). (

);

 (content). (

);

 (content). (

);

 });

 (, ()  
 => {

 dbPath = path. (__dirname,  

);

 content = fs. (dbPath,  
);

 (content). (

);

 (content). (

);

 (content). (

);

 (content). (

);

 (content). (

);

 });

 (

, () => {

 dbPath = path. (__dirname,  

);

 content = fs. (dbPath,  

);

 (content). (

);

 (content). (

);

 (content). (

);

 (content). (

);

 });

 });

});

"@jest/globals"
"fs"

"path"

"Database Index Module"
"Module Structure"

"should exist as a TypeScript file with  
 proper exports"

index.ts

utf8

"export const  
 db"

"export { sql  
 }"

"export const  
 closeDatabase"

"should have proper import structure"

 "index.ts"

"utf8"

'from "drizzle- 
 orm/postgres-js"'

'from  
 "postgres"'

'from "@/ 
 env"'

'from "./ 
 tables"'

'from "@/lib/ 
 database/connection"'

"should have proper file structure with  
 comments"

 "index.ts"

 "utf8"

"// Use unified  
 database URL"

"// Get  
 environment-appropriate connection  
 configuration"

"// Validate and  
 log configuration in development"

"// Set up the  
 SQL client with dynamic configuration"

describe
describe

it

join

expect existsSync toBe

readFileSync

expect toContain

expect toContain

expect toContain

it

join

readFileSync

expect toContain

expect toContain

expect toContain

expect toContain

expect toContain

it

join

readFileSync

expect toContain

expect toContain

expect toContain

expect toContain

// Verify module structure

// Verify imports

// Verify proper structure

index.test.ts

Ridiculously written unit test in an open-source
vibe-coded project.

The 10 Critical Anti-Patterns of AI-Generated Code > The Lie of Unit Test Code Coverage | Quantity Does Not Equal Quality

https://www.ox.security/

www.ox.security OX October 2025 | 14

6 Phantom Bugs | When Machines
Experience "Skin-Crawling"
Cluster: AI-Specific Behaviors & Code Quality
Occurrence Rate: Low (20-30%)

In the realm of artificial intelligence, particularly with GenAI, a curious phenomenon known as

"phantom bugs" has emerged, drawing a parallel to the medical term "formication." Formication is

a tactile hallucination where an individual experiences the sensation of insects crawling on or

under their skin, tingling, itching, or prickling, despite no actual insects being present, a

sensation often described as "skin-crawling." Similarly, GenAI, when generating code, can exhibit

a form of "hallucination" where it becomes overly concerned with handling theoretical or

extremely improbable edge cases that have little to no basis in real-world scenarios.

This type of hallucination is not unique to code generation; it has been well-documented in other

GenAI applications, such as image generation, where algorithms might create non-existent

features or illogical details, and in chatbots, which can sometimes invent facts or go off-topic.

The challenge of these "phantom bugs" has undeniably permeated the field of code

development by GenAI. When applications are constructed with such overly cautious and

sometimes baseless logic, the consequences can be significant. These include, but are not

limited to, substantial performance degradation due to unnecessary checks and overly complex

error handling, as well as an excessive consumption of computational resources.

The GenAI, in its attempt to be exhaustively robust, might introduce code that,
while theoretically addressing every conceivable permutation, practically bloats the
application, slows its execution, and escalates its operational costs.

This highlights a critical area for improvement in GenAI's ability to discern relevant from irrelevant

complexity, ensuring its output is not just functional but also efficient and practical.

https://www.ox.security/

www.ox.security OX October 2025 | 15

Next: Bugs Déjà-Vu | Patch, Re-Patch, and Patch Again

7 Vanilla Style | From
Scratch, Whether You
Like It or Not
Cluster: Code Architecture
& Design
Occurrence Rate: Medium (40-50%)

Experienced developers instinctively leverage the

open-source community, searching for existing

libraries and solutions before building from

scratch. While this can create dependencies - as

the infamous npm left-pad incident demonstrated

(where the removal of a tiny, seemingly

insignificant package caused widespread

disruption across the JavaScript ecosystem) - it

generally accelerates development and leverages

battle-tested code.

GenAI agents take the opposite approach: they

default to "vanilla" implementations, building from

scratch rather than using existing packages or

official SDKs.

When tasked with integrating a SaaS API, a

GenAI agent typically implements the HTTP

request logic itself - crafting headers, handling

authentication, managing request bodies, and

parsing responses - rather than using the official

SDK or established client libraries.

This creates a complex
trade-off:

Potential benefits:

L eaner codebases with fewer dependencies

Reduced supply chain security risks

Greater control over integration logic

Significant risks:

Reinventing the wheel for common

functionality

Reintroducing bugs and vulnerabilities

already solved in mature SDKs

Missing community-tested edge cases and

best practices

Verbose boilerplate that may not handle

errors, retries, or resource management

properly

Official SDKs are maintained by experts,

thoroughly tested, and benefit from community

scrutiny. Custom implementations rarely match

this robustness. Understanding this fundamental

difference - AI's preference for self-

implementation over proven libraries- is crucial

for evaluating the architecture, security, and long-

term maintainability of AI-generated applications.

https://www.ox.security/

www.ox.security OX October 2025 | 16

8 Bugs Déjà-Vu | Patch, Re-Patch, and Patch Again
Cluster: Development Process
Occurrence Rate: High (70-80%)

One significant side effect of GenAI's tendency to avoid major refactoring efforts is its direct

violation of a fundamental software engineering principle: "Code Reuse." This principle dictates

that existing software components should be leveraged in new applications rather than being

rewritten from scratch. The practice of code reuse offers substantial benefits, including

considerable time savings during development, reduced overall development costs, and

enhanced software quality and reliability. These improvements stem from the utilization of

battle-tested solutions, such as established libraries, robust frameworks, and well-defined APIs.

This avoidance of code reuse in GenAI-generated code frequently leads to a
problematic phenomenon we term "Bugs déjà-vu."

This occurs when the same bug, or a highly similar variant, recurs multiple times within the

same codebase. Because GenAI often produces redundant code rather than reusing existing,

proven solutions, each instance of a bug often requires separate, independent remediation.

This lack of centralized handling for recurring issues is inherently inefficient, consuming

valuable development resources and time. More critically, the repetitive encounter with the

same or similar defects can significantly degrade the user experience, leading to widespread

dissatisfaction and a perception of low software quality. The absence of a systematic

approach to common problems, due to the disregard for code reuse, creates a perpetual

cycle of reactive bug fixes rather than proactive and sustainable solutions.

Next: It Worked On My Machine Syndrome | Production is a Bitch

https://www.ox.security/

www.ox.security OX October 2025 | 17

Next: By-The-Book Fixation | Excellent Replicators, Terrible Innovators

9 It Worked On My
Machine Syndrome |
Production is a Bitch
Cluster: Development
Process
Occurrence Rate: Medium (60-70%)

"It worked on my machine" is a classic refrain

among developers, highlighting a pervasive

challenge in software development: the disparity

between a local development environment and

target deployment environments. This common

expression encapsulates the frustration when

code functions flawlessly on a developer's

computer but fails catastrophically when moved

to a testing server, a staging environment, or,

worst of all, a production system.

The root causes of this discrepancy are
multifaceted. Often, it stems from subtle
differences in environmental configurations.

A developer's machine might have a specific

version of a library installed globally, while the

production server requires a different one, or

perhaps a critical environment variable is set

locally but missing in the deployment

environment. Missing dependencies are another

frequent culprit; a developer might have a

package installed that is assumed to be present

on the target system but is not. Furthermore,

variations in operating system versions, differing

system paths, or even slightly varied hardware

specifications can introduce unforeseen issues.

This problem is particularly exacerbated with the

rise of coding agents. These AI-powered tools

typically operate within the confined scope of a

developer's Integrated Development Environment

(IDE) or Command Line Interface (CLI). While

incredibly powerful for generating, refactoring, and

debugging code within this isolated context, they

inherently lack awareness of the broader runtime

environment. They are not privy to the nuanced

configurations, specific constraints, or unique

dependencies of the target deployment

infrastructure. Consequently, the code they

generate, while syntactically correct and functionally

sound in the developer's immediate workspace,

may inadvertently introduce "environmental bugs"

that only surface during deployment.

This fundamental limitation underscores the

continued importance of robust testing,

comprehensive environment management,

and a deep understanding of deployment

pipelines to bridge the gap between "it worked

on my machine" and reliable, production-

ready software.

https://www.ox.security/

www.ox.security OX October 2025 | 18

Next: Anti-Patterns’ Occurrence Rates

10 By-The-Book Fixation |
Excellent Replicators,
Terrible Innovators
Cluster: AI-Specific
Behaviors & Code Quality
Occurrence Rate: High (80-90%)

GenAI has revolutionized software development

by producing code that inherently adheres to the

latest best practices. This includes a meticulous

application of modern syntax, extensive code

documentation, and the rigorous avoidance of

established anti-patterns. The output is typically

clean, readable, and aligned with current industry

standards, making it seemingly ideal for rapid

prototyping and efficient development cycles.

However, an intriguing paradox arises from this

adherence to "by-the-book" methodologies.

While general best practices are crucial for

maintainability and scalability, there are

instances where the most elegant and efficient

solution to a specific problem might deviate

from these widely accepted guidelines. For

example, a highly optimized algorithm might

employ a less common data structure or a more

intricate logical flow that, while perfectly sound,

might not be immediately recognizable as a "best

practice" by a broad audience or even by the

GenAI itself, which is trained on a vast corpus of

conventional code.

Without explicit instruction, GenAI coding agents

operate within their fixed guidelines, effectively

acting as highly proficient, yet strictly rule-bound,

programmers. Their training data reinforces

patterns and conventions, making them excellent at

replicating what is commonly considered "good

code." This leads to a consistent output but can limit

their capacity for truly innovative or situationally

optimal solutions that might require a departure

from the norm.

The power and flexibility of GenAI are revealed

when specific directives are provided. When a

developer explicitly requests the coding agent to

"stray out of its fixed guidelines" or to prioritize a

specific performance metric over a conventional

best practice, the agent demonstrates a remarkable

ability to comply and adjust its output.

This impressive adaptability underscores
the potential for GenAI to go beyond
mere adherence to standards and to
become a tool for highly specialized and
optimized code generation, provided the
human developer offers the necessary
context and guidance to push beyond
the default best practices.

This collaborative approach, where human insight

guides AI's immense processing power, holds the

key to unlocking truly innovative and highly

effective software solutions.

https://www.ox.security/

www.ox.security OX October 2025| 19

Anti-Patterns’ Occurrence Rates

Anti-Pattern / Behavior Cluster Occurrence Rate

Comments Everywhere

Explaining the Obvious to Future AI

AI-Specific Behaviors & Code Quality Critical (90-100%)

By-The-Book Fixation

Excellent Replicators, Terrible
Innovators

AI-Specific Behaviors & Code Quality High (80-90%)

Avoidance of Refactors

The Missing 'Who Wrote This Sh*t?'
Reflex

Development Process High (80-90%)

Over-Specification

Dispose-After-Use Code

Code Architecture & Design High (80-90%)

Bugs Déjà-Vu

Patch, Re-Patch, and Patch Again

Development Process High (70-80%)

It Worked On My Machine
Syndrome

Production is a Bitch

Development Process Medium (60-70%)

Vanilla Style

From Scratch, Whether You Like It
or Not

Code Architecture & Design Medium (40-50%)

The Return of the Monoliths

Throwing Micro-Services Out the
Window

Code Architecture & Design Medium (40-50%)

The Lie of Unit Test Coverage

Quantity Does Not Equal Quality

Development Process Medium (40-50%)

Phantom Bugs

When Machines Experience "Skin-
Crawling"

AI-Specific Behaviors & Code Quality Low (20-30%)

Next: Anti-Patterns Vs Best Practices

https://www.ox.security/

www.ox.security OX October 2025| 20

Anti-Patterns Vs Best Practices

Anti-Pattern Core Issue Root Cause
Best Practice
Violated

Primary Impact

Comments
Everywhere | Note
to Future AI Self

Excessive inline
commenting
beyond human
norms

Memory architecture
limitations; comments
as AI navigation
"breadcrumbs"

Clean Code Internal AI tool, rather than
human documentation, reveals
model constraints

Avoidance of
Refactors | Missing
'Who Wrote This?'
Reflex

No instinctive
code
improvement
process

Focus on immediate
solutions vs. long-term
quality; lacks semantic
understanding

Technical
Debt
Accumulation

Technical debt accumulation;
missed optimization
opportunities

Over-Specification |
Dispose-After-Use
Code

Hyper-specific
solutions lacking
generalization

Training on pattern
replication vs. abstract
principles; knows
"what", not "why"

Code
Reusability,
Abstraction

Fragmented codebase; difficult
maintenance and evolution

Return of Monoliths
| Throwing
Microservices Out

Consolidated
structures over
distributed
architectures

Problem simplification
+ refactoring
avoidance

Maintainability Compromised scalability and
modern architectural practices

Unit Test Coverage
Lie | Quantity ≠
Quality

High coverage
numbers,
questionable test
quality

Speed enables rapid
test generation; inflated
metrics

Meaningful
Testing

False confidence; coverage
doesn't guarantee robustness

Phantom Bugs |
Machine "Skin-
Crawling"

Over-concern
with theoretical
edge cases

AI hallucination applied
to code complexity

KISS (Keep it
simple,
Stupid)

Performance degradation;
resource waste; bloated
applications

Vanilla Style | No
Dependencies, No
Patches

From-scratch
implementation
over library
usage

Preference for bespoke
code vs. open-source
leverage

Don't
Reinvent the
wheel

Positive: Reduced dependency
risks, leaner codebases 
Negative: Reinventing wheels,
missing community-tested
solutions, potential security
vulnerabilities

Bugs Déjà-Vu |
Patch, Re-patch,
Patch Again

Recurring
identical bugs
across codebase

Lack of code reuse
leads to redundant
implementations

Code Reuse Inefficient fixing cycles;
degraded user experience

"Worked on My
Machine" |
Production is a
Bitch

Dev environment
success,
production
failures

Limited awareness of
deployment
environments and
constraints

Environment
Parity

Environmental bugs surface
only at deployment

By-The-Book
Fixation | Excellent
Replicators, Terrible
Innovators

Strict adherence
to conventions
over optimal
solutions

Training on
conventional patterns;
rule-bound
programming

Creative
Problem-
Solving

Consistent but potentially
suboptimal results; requires
human guidance for innovation

https://www.ox.security/

www.ox.security OX October 2025| 21

Takeaways: What Does This Mean
for AI-Assisted Development?
GenAI is proving to be an excellent tool, effectively

serving as an army of gifted junior developers (not

experienced software architects or product

managers). Indeed, all the drawbacks of AI coding

highlighted in this research are analogous to

challenges commonly faced by junior developers.

A fundamental principle in data science is

"garbage in, garbage out," emphasizing that the

quality of input directly dictates the quality of

output: GenAI coding agents perform best when

given clear instructions, detailed requirements,

and a well-defined design.

Our research indicates that code generated
by AI agents is only as good as the
instructions it receives - but most
organizations haven't developed best
practices regarding the use of AI coding
tools within their environments.

Any organization that embraces GenAI coding

while embedding this understanding within its

structure will achieve a significant leap forward in

rapid application development.

As we examine the profile of AI coding emerging,

we arrive at these few takeaways:

1 The Great Developer Evolution:
From Coder to Architect

While models compete over who has the largest

context window, the real human talent is the

ability to think outside the context: Humans are

less fixated than models, developers possess

critical thinking, the ability to see the big picture,

and long-term strategic thinking.

Models cannot perform product management work

- requirements management, client conversations,

understanding what's truly important - nor will they

decide the most appropriate architecture for us.

They still lack the familiarity with the knowledge that

humans have accumulated from living in a four-

dimensional world (where space and time matter).

Developers need to make AI work effectively - every

developer must transition from being a programmer

to becoming a software architect, thinking in entirely

new ways. You've essentially received a promotion

and gained an army of junior developers to

manage. Without proper orchestration of AI

systems, we'll fail to achieve optimal results.

2 The Critical Knowledge Gap:
What Bots Can't Find

Currently, models have learned the world's

knowledge from open data on the internet -

they've read Wikipedia and Stack Overflow, social

networks, and after realizing this wasn't sufficient,

they began reading entire libraries.

But they still have one huge gap when it comes

to writing code: software architecture.

Human knowledge of software architecture is

largely undocumented in publicly accessible

services. Without proper architectural work and

orchestration, you'll get a product that looks good

but will fail within a short time.

https://www.ox.security/

www.ox.security OX October 2025 | 22

Security Impact: 
Insecure by Dumbness
Contrary to widespread assumptions, our

analysis reveals that AI-generated code does

not inherently contain a higher density of

obvious security vulnerabilities per line. The

ratio of vulnerabilities to code lines remains

remarkably similar between human-written and

AI-generated code. This finding challenges

the common perception that AI

automatically produces less secure software.

The fundamental distinction - and indeed the

greater security risk - lies not in the prevalence of

typical vulnerabilities like SQL injection, Cross-

Site Scripting, or Server-Side Request Forgery

within the code itself. Instead, it lies in a more

insidious shift: the evolution from trained

developers to non-technical users producing

applications using junior-level AI tools, without

corresponding expertise development.

The Core Security Risk
Today, people without cybersecurity knowledge

are developing and deploying to production

applications. Neither they nor the AI assistants

they rely on possess the knowledge to identify

what security measures to implement or how to

remediate vulnerabilities when they arise.

The resulting code is not insecure by

malpractice or by malicious intent, but rather

insecure by ignorance.

This security gap is exponentially amplified by

AI's ability to accelerate development cycles. AI

tools effectively remove the natural human

bottlenecks that previously controlled the flow

of code reaching production.

1 The “It Works” Trap

AI tools enable developers to create functional

applications with remarkable speed, fostering

false confidence in production readiness. This

phenomenon affects even experienced

developers - once they observe an application

running successfully, they often assume it's

ready for production deployment.

Yet critical security questions remain

unaddressed: How is authentication

implemented? What customer data is stored,

and how is it protected? Which endpoints are

exposed to the internet? What access controls

govern sensitive operations? Even seasoned

developers struggle to maintain security focus

during rapid development cycles, and non-

technical users of AI tools rarely consider these

questions at all.

The harsh reality is that no AI model
currently exists that consistently generates
code without security vulnerabilities. The
technology excels at creating functional
implementations but lacks the contextual
understanding necessary for
comprehensive security design.

https://www.ox.security/

www.ox.security OX October 2025 | 23

2 The False Promise of
Code Review

Relying on human code review to catch AI-created

security issues represents a fundamentally flawed

strategy destined for failure. Code review is

inherently tedious work that drains focus, creates

mental fatigue, and inevitably leads to growing

backlogs. The human attention required for a thorough

security review cannot scale with AI's output velocity.

There's also the scale Mismatch & Missing Security

Intent: When people build entire applications from

single prompts, and security considerations rarely enter

the initial scope - review will not help anyone to fix a

root issue.

Security Impact: Insecure by Dumbness

Takeaways: 
Key Security Action Items

Abandon code review as a security strategy
Traditional review cannot scale with AI output velocity and lacks the critical

dialogue necessary for security insights.

Develop organizational security instruction sets
Embed security guidelines directly into AI workflows rather than hoping to catch

issues later.

https://www.ox.security/

www.ox.security OX October 2025 | 24

Conclusion:
Harness Human
Creativity, Execute
with AI Efficiency,
Secure at Scale
We are experiencing a period of hyper-growth

in AI capabilities: While we anticipate gradual

improvements in AI architectural

understanding, the fundamental challenges

documented in this research will persist in the

near term.

The trajectory is clear: organizations that

structure themselves around AI handling

implementation while humans focus on

orchestration, architecture, and product

vision will see the most significant

productivity gains.

We foresee an explosion in security incidents

related to vibe-coding. As new AI-Native

Security capabilities become standardized,

organizations must adopt healthy AI-assisted

development practices.

Strategic
Imperatives

1 For AI-Coding Adoption

Embrace the Technology: Organizations

that fail to leverage GenAI will fall behind

competitively.

Role Transformation: Position AI as

implementation support while humans

focus on:

P roduct management and requirements

gathering

Architectural decisions and system design

Quality orchestration and strategic oversight

2.

Human-Centric Innovation: Preserve

human leadership for breakthrough

solutions. While AI excels at implementation,

human creativity and critical thinking remain

irreplaceable for novel, groundbreaking, and

innovative challenges.

3.

2 For AI-Coding Security

Abandon Code Review as Your Primary

Security Layer: It won't scale to AI's output

speed and lacks the dialogue needed for real

insights.

Promptify Security Requirements: Build

security instruction sets into every AI workflow.

A need for Vibe-Security: Recognize the gap

in autonomous, AI-native security to keep up

with AI's coding velocity.

https://www.ox.security/

www.ox.security OX October 2025| 25

Expert Perspectives:
Industry Voices on “Army of Juniors”

Chris Hughes
CEO & Co-Founder at Aquia

"The OX Security Army of Juniors report highlights the critical risks associated with widespread AI-
generated coding. On one hand, it is tempting for organizations to lean into AI coding tools in pursuit of
increased "productivity", but it comes at the expense of secure code and sound engineering. As
developers continue to rapidly adopt AI-coding tools and practices, especially in the absence of
security-centric prompting and validation, the digital attack surface is poised for exponential growth like
never before. AI may have written the code, but humans are left to clean it up and secure it."

Francis Odum
Cybersecurity Researcher and Independent Analyst

"Fast code without a framework for thinking is just noise at scale. Without someone shaping the
architecture, AI-generated systems grow wide but not deep. We believe that High test coverage from
GenAI can mask shallow logic. The tests may pass, but they often prove that the code runs, not that it
handles reality. Quantity can give an illusion of quality unless paired with judgment. That's why OX's
approach of profiling AI-generated code to expose hidden anti-patterns is essential. It gives
teams the visibility they need to apply judgment before problems scale."

James Berthoty
Security Engineer and Industry Analyst

"This report does an excellent job covering the emerging risks of AI-generated code - from hygiene to
security. Many of these issues are shipping short-term features without long-term considerations, which is
exactly how the most severe security vulnerabilities are introduced. Without careful considerations,
guardrails, and application architecture, things can quickly go sideways for your business."

https://www.ox.security/

www.ox.security OX October 2025|

https://www.ox.security/

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	21
	22
	23
	24
	25
	26

