Y OY.

Army of Juniors:
The Al Code Security Crisis

How 10 critical anti-patterns in Al-generated
code are systematically undermining software
security at scale

Table of Contents

O1. A Note from OX Research 02
02. Executive Summary: Al is Fast, Eager & Lacking Judgment 03
Key Findings 03
03. The 10 Critical Anti-Patterns of Al-Generated Code 04
04. Introduction: The Productivity Trap 05
Methodology 06
05. The 10 Critical Anti-Patterns of Al-Generated Code 07
1. Comments Everywhere | Note to Future Al Self 07
2. Avoidance of Refactors | The Missing ‘Who Wrote This Sh*t?* Reflex 09
3. Over-Specification | Dispose-After-Use Code 10
4. The Return of the Monoliths | Throwing Micro-Services Out the Window 1
5. The Lie of Unit Test Code Coverage | Quantity Does Not Equal Quality 12
6. Phantom Bugs | When Machines Experience “Skin-Crawling” 14
7. Vanilla Style | From Scratch, Whether You Like It or Not 15
8. Bugs Déja-Vu | Patch, Re-Patch, and Patch Again 16
9. It Worked On My Machine Syndrome | Production is a Bitch 17
10. By-The-Book Fixation | Excellent Replicators, Terrible Innovators 18
06. Anti-Patterns’ Occurrence Rates 19
O7. Anti-Patterns Vs Best Practices 20
08. Takeaways: What Does This Mean for Al-Assisted Development? 21
The Great Developer Evolution: From Coder to Architect 21
The Critical Knowledge Gap: What Bots Can't Find 21
09. Security Impact: Insecure by Dumbness 22
10. Conclusion: Harness Human Creativity, Execute with Al Efficiency, 24

Secure at Scale

11. Strategic Imperatives 24
For Al-Coding Adoption 24
For Al-Coding Security 24
12. Expert Perspectives: Industry Voices on “Army of Juniors” 25

Vox WWW.OX.Security OX | October 2025 m

https://www.ox.security/

A Note from OX Research

In early 2025, as Al coding tools accelerated from curiosity to standard practice,
organizations faced a question no one could answer: How do you secure code that's

generated faster than humans can review it?

The industry's response was predictable: "Scan more. Detect more." But we suspected this

couldn't be the answer.

As we witnessed the industry changing rapidly, we set out to better understand Al-
generated code. Was it more flawed than human-written code? We (humanly) analyzed

over 300 repositories: 50 explicitly built with Al coding tools, 250 human-coded baselines.
What we found wasn't what we expected.

We identified 10 critical anti-patterns in Al-generated code that revealed how Al
fundamentally approaches problems. However, the vulnerability density per line of Al-
generated code was similar to human code. The crisis wasn't code quality.

It was deployment velocity.

Al tools had removed every natural bottleneck that previously controlled what reached
production. Traditional security—code review, shift-left scanning, post-deployment detection
—couldn't scale to match. Even before Al adoption, organizations were already drowning—
according to OX research, dealing with an average of 569,000 security alerts at any given
time. Teams were overwhelmed before Al. Now, how could security possibly keep up?

The conclusion was inescapable: detection-led security is collapsing.

This research revealed that traditional security approaches fundamentally cannot keep pace
with Al-generated code velocity. The 10 critical anti-patterns we identified, combined with the
"insecure by dumbness" phenomenon, made it clear that security needed to evolve from

reactive scanning to proactive, embedded intelligence.

Launched in September 2025, VibeSec represents our response: security embedded directly
into coding workflows, preventing vulnerabilities before they exist rather than chasing them

after deployment.

The following report documents what we found - and why it matters.

— OX Research Team, October 2025

Vox WWW.OX.Security OX | October 2025

https://www.ox.security/

Executive Summary: Al is Fast,
Eager & Lacking Judgment

Software development has entered uncharted
territory. For the first time in computing history,
functional applications can be built faster than

humans can properly evaluate them.

Our analysis of 300+ repositories reveals
that Al-generated code behaves like an army
of talented junior developers - fast, eager,
but fundamentally lacking judgment.

Key Findings

Al-generated code exhibits 10 distinct
anti-patterns that directly contradict
established software engineering
best practices, systematically
compromising long-term

maintainability, security, and scalability

a Vulnerability density per line mirrors
human code, but deployment velocity
has accelerated exponentially

Non-technical users are shipping
production systems without security
expertise, creating applications that are
"insecure by dumbness"

n Organizations face a critical choice:
adapt development practices or face a
wave of technical debt and security
incidents

The Real Crisis

The problem isn't that Al writes worse code - it's
that vulnerable systems now reach production
at unprecedented speed. Breaches at Replit,
Lovable, and Tea App demonstrate this pattern
materializing: developers using Al tools fo rush
applications to market without understanding
fundamental security principles, exposing

thousands of users to preventable risks.

Code Review Cannot Scale

Organizations must fundamentally restructure
development roles. Al should handle
implementation while humans focus on
architecture, orchestration, and security
oversight. Traditional code review cannot
scale with Al's output velocity - instead,
organizations need threat modeling, security
guardrails embedded in Al workflows, and
emerging solutions like Al-powered

autonomous vulnerability remediation.

The transformation is accelerating.
Organizations that fail to adapt will either fall
behind competitively or drown in the technical
debt and security incidents that Al's speed

makes inevitable.

Next: The 10 Critical Anti-Patterns of Al-Generated Code

WWW.0X.security

Y ox

OX | October2025 (5

https://www.ox.security/

Anti-Pattern Core Issue Root Cause

Comments Everywhere Excessive inline Memory architecture
| Note to Future Al Self commenting beyond limitations; comments as
human norms Al navigation
"breadcrumbs”
Avoidance of Refactors No instinctive code Focus on immediate
| Missing '"Who Wrote improvement process solutions vs. long-term
This?' Reflex quality; lacks semantic

understanding

Over-Specification | Hyper-specific solutions Training on pattern

Dispose-After-Use lacking generalization replication vs. abstract

Code principles; knows "what",
not "why"

Return of Monoliths | Consolidated structures ~ Problem simplification +

Throwing Microservices over distributed refactoring avoidance

Out architectures

Unit Test Coverage Lie | High coverage numbers, Speed enables rapid test

Quantity # Quality questionable test quality generation; inflated
metrics

Phantom Bugs | Over-concern with Al hallucination applied

Machine "Skin- theoretical edge cases to code complexity

Crawling"

Vanilla Style | No From-scratch Preference for bespoke

Dependencies, No implementation over code vs. open-source

Patches library usage leverage

Bugs Déja-Vu | Patch, Recurring identical bugs Lack of code reuse leads

Re-patch, Patch Again across codebase to redundant

implementations

"Worked on My Dev environment Limited awareness of
Machine" | Production success, production deployment environme
is a Bitch failures nts and constraints
By-the-Book Fixation | Strict adherence to Training on conventional
Excellent Replicators, conventions over optimal patterns; rule-bound
Terrible Innovators solutions programming

Vox WWW.OX.Security

Primary Impact

Internal Al tool, rather than
human documentation, reveals
model constraints

Technical debt accumulation;
missed optimization opportunities

Fragmented codebase; difficult
maintenance and evolution

Compromised scalability and
modern architectural practices

False confidence;
coverage doesn't guarantee
robustness

Performance degradation;
resource waste; bloated
applications

Positive: Reduced dependency
risks, leaner codebases

Negative: Reinventing wheels,
missing community-tested
solutions, potential security
vulnerabilities

Inefficient fixing cycles; degraded
user experience

Environmental bugs surface only
at deployment

Consistent but potentially
suboptimal results; requires
human guidance for innovation

OX | October 2025

https://www.ox.security/

Introduction: The Productivity Trap

Software development has crossed a threshold,
becoming a pioneering industry in Al adoption.
Unlike heavily regulated sectors such as
transportation, aviation, pharmaceuticals, or
financial services - where safety requirements
and compliance frameworks slow technology
integration - software engineering faces
minimal barriers to Al implementation.
Generative Al has eliminated the natural
bottlenecks that previously controlled code
quality: human typing speed, debugging time,

and implementation complexity.

The result is unprecedented: applications
can now be conceived, built, and
deployed faster than human judgment
can properly evaluate them.

Our analysis of over 300 repositories, 50
explicitly built using Al coding platforms
compared against 250 human-coded
baselines, reveals a consistent pattern.
Al-generated code exhibits the
characteristics of talented junior developers:
highly functional, syntactically correct, but
systematically lacking in architectural
judgment and security awareness.

WWW.0X.security

Y ox

This creates a deceptive productivity trap.
Teams see applications running successfully
and assume they're production-ready, while
critical questions remain unaddressed: How is
authentication implemented? What data is
being stored and how is it protected? Which
endpoints are exposed fo the internet? The
harsh reality is that no Al model currently
generates consistently secure code, yet
nothing prevents these systems from
reaching users.

The stakes extend beyond individual
organizations. We're witnessing the emergence
of a generation of applications built by non-
technical users wielding Al tools without
corresponding expertise development. The
resulting software isn't insecure by malicious
design, it's insecure by ignorance, creating
systemic risks that scale with Al's deployment
velocity.

This report examines how organizations can
harness Al's unprecedented speed while
avoiding the security avalanche that
uncontrolled adoption makes inevitable.

Next: Methodology

OX | October2025 ()

https://www.ox.security/

Methodology

This investigation began as one researcher's
curiosity about Al-generated code quality in an
era where few people examine the underlying
code - and not as an academic standards-
based study. We combined direct code
examination with developer conversations,
prioritizing pattern recognition over statistical
validation.

Repository Selection

We examined over 300 open-source
repositories through old-fashioned human
code review. Of these, 50 explicitly mentioned
Al coding tools (GitHub Copilot, Cursor,
Claude) in documentation or commits, while
the remaining 250+ served as our comparison
baseline. This approach captures only projects
where developers disclosed Al usage, creating
potential selection bias toward developers

comfortable advertising their Al tool adoption.

Baseline Comparison

For context, we reviewed repositories created
before widespread Al tool adoption (pre-2022).
This temporal comparison helps distinguish
Al-specific patterns from general trends,
though older code may reflect different

practices regardless of Al involvement.

Language Scope

Primary analysis focused on JavaScript
and Python, with validation across Go,
Dart, and Kotlin.

Developer Insights

Informal conversations with senior developers
provided context for interpreting code patterns

and understanding practical implications.

Next: The 10 Critical Anti-Patterns of Al-Generated Code

WWW.0X.security

Y ox

OX | October2025 (&

https://www.ox.security/

The 10 Critical Anti-Patterns
of Al-Generated Code

Each of the following behaviors represents a
violation of fundamental software engineering
principles that the industry has spent decades
establishing - code reuse, continuous
improvement, Test-Driven Development, and
architectural patterns like microservices. Al-
generated code systematically undermines
these practices that ensure maintainable,
scalable, and secure software. These aren't
merely "different approaches" - they're
regressions to patterns the industry deliberately

moved away from.

Comments Everywhere
| Note to Future Al Self

Cluster: Al-Specific
Behaviors & Code Quality

Occurrence Rate: [Heigile=IRCION[0]057S)
One of the most striking and, at fimes,
perplexing characteristics of code generated by
modern GenAl models is the sheer abundance
of redundant comments. Unlike human
developers, who typically reserve extensive
commenting for intricate algorithms, critical
business logic, or foundational boilerplate,
GenAl models embed comments with a
frequency that often feels excessive, like an
overeager student annotating every line of their
first programming assignment. This
phenomenon might lead some human

observers to conclude that the

WWW.0X.security

Y ox

GenAl is simply being helpful, a benevolent
digital assistant striving for clarity and
maintainability. However, such an interpretation
misses the underlying mechanistic imperative

driving this behavior.

The true impetus behind the copious
commenting lies in a fundamental
architectural limitation and an inherent "pain
point" of current GenAl models: their
struggle with efficient and scalable long-
term memory, particularly within the confines
of their growing context windows. While the
capacity of these context windows — the
amount of information a model can process
and "remember" at any given fime — has
expanded dramatically, this expansion comes at

a significant cost.

As the context window increases, so too
does the computational burden, leading to
slower inference times and substantially

higher operational expenses.

In this light, the seemingly superfluous
comments transform into a crucial navigational
and organizational tool for the GenAl itself.
They function as a sophisticated "bread
crumbs" system within the generated code.

Imagine a GenAl model as a brilliant, yet
inherently forgetful, explorer navigating a
vast and complex forest of code. Without
these regular markers, the model would be
forced to rely on an exhaustive

OX | October 2025

https://www.ox.security/

Comments Everywhere | Note to Future Al Self

re-reading of the entire "forest" every time it
needed to revisit or modify a specific
section of code.

This complete re-processing is analogous to
human memorization, a process that is
computationally intensive and inefficient for

large language models.

By scattering comments every few lines, the
GenAl creates internal anchors. These
comments act as concise summaries or
signposts, allowing the model to quickly "get
back" to a specific point in the code and
understand its immediate context without
having to load and parse an enormous, ever-
expanding context window from scratch. This
strategy makes the model significantly more
"lean" in its operational footprint. It reduces the
dependence on a massive, expensive context
window by providing readily accessible, high-

level summaries of code segments.

This allows the model to work more efficiently,
maintaining its ability to understand and
manipulate complex code structures even as
the overall codebase grows, without incurring
the prohibitive costs associated with constantly

expanding its "active memory."

In essence, the comments are not primarily
for human consumption, though they
certainly aid human readers. Instead, they
are a testament to the internal workings of
GenAl, a clever workaround for their current

limitations in long-term, scalable memory.

if (result.isEmpty) 1
return null; // Invalid credentials

¥

final row = result.first;
final userId = row[0] as String;
final userType = UserType.values[row[1l] as int];

// Check if user type matches expected type
if (userType != expectedUserType) {

return null; // Wrong user type for this login page
¥

// Generate and store session token
final sessionToken = _generateSessionToken();
_activeSessions[sessionToken] = userId;

return sessionToken;

3

// Get user ID from session token
static String? getUserIdFromSession(String sessionToken)

{

return _activeSessions[sessionToken];

¥

// Logout user
static void logout(String sessionToken) {
_activeSessions.remove(sessionToken);

3

Typical TypeScript code generated by GenAl, where an excessive
amount of comments have been added to the codebase.

Next: Avoidance of Refactors | The Missing 'Who Wrote This Sh*t?' Reflex

Vox WWW.OX.Security

OX | October2025 [

https://www.ox.security/

Avoidance of Refactors
| The Missing 'Who
Wrote This Sh*t?' Reflex

Cluster: Development
Process

Occurrence Rate: [iglis]aNtsIoRI0M7]

Every seasoned developer who steps into an

intricate, pre-existing software project often
finds themselves grappling with a universal,
existential question: "Who wrote this sh*t?" This
initial sentiment quickly morphs into an all-
consuming mission: to convince the team that
a complete refactoring is not just beneficial,
but absolutely essential. This drive leads to
radical redesigns, framework upgrades, or

complete language overhauls.

This human inclination fowards continuous
improvement, this relentless pursuit of cleaner,
more efficient, and ultimately more maintainable
code, stands in stark contrast to the current state
of GenAl-generated code. GenAl-generated
code largely bypasses this crucial process.

The fundamental divergence lies in their
respective objectives: Humans strive for
elegance, scalability, and long-term
viability, constantly refining their work to
achieve these ideals. GenAl, on the other
hand, is primarily geared towards
producing a functional solution based on
the immediate prompt.

Its output is a direct response to a given
instruction, optimized for the present moment
rather than anticipating future modifications or
optimizations. This inherent lack of foresight

means that while the code may work, it often

WWW.0X.security

Y ox

lacks the architectural integrity and structural
coherence that human developers painstakingly
build in.

Furthermore, GenAl's "understanding” of code
structure is largely confined to syntax. It
comprehends the rules of the language and can
construct syntactically correct code, but it lacks
the deeper, semantic comprehension that allows
human developers to grasp the underlying intent,
the potential for refactoring, or the implications of
design choices on future maintainability. It doesn't
inherently "understand" the why behind design

patterns or the long-term benefits of abstraction.

While the rapidly growing landscape of Al tools
includes utilities designed to assist GenAl in
refactoring, this capability is not yet an intrinsic
component of its fundamental generation process.
The current paradigm still sees GenAl as a
powerful, yet somewhat blunt, instrument for initial
code generation, leaving the critical, iterative
process of refinement and optimization largely in
the hands of human developers. This means that
the familiar lament of "Who wrote this sh*t?" is
likely to echo in the halls of software development

for the foreseeable future.

Next: Over-Specification | Dispose-After-Use Code

OX | October2025 (&3

https://www.ox.security/

Over-Specification |
Dispose-After-Use
Code

Cluster: Code Architecture
& Design

Occurrence Rate: [iglis]aNtsIoRI0M7]

Human developers instinctively seek generalized
solutions: identifying patterns, abstracting them
into reusable components, and designing
algorithms applicable across similar situations.
This pursuit of generalization creates frameworks,
libraries, and design patterns that enhance

efficiency and reduce redundant effort.

GenAl does the opposite. It focuses intensely on
the specific problem in the prompt, generating
highly tailored code that addresses precise
constraints. While this ensures immediate
functionality, it comes at the cost of broader
applicability. The resulting code rarely generalizes
to different contexts or even subtle variations of
the original problem.

In data science, this is called overfitting -
when a model learns training data too well,
including its noise and outliers, resulting in
poor generalization.

The practical impact is severe: GenAl generates
proliferating, isolated code snippets. Each minor
deviation requires entirely new code rather than
adapting existing solutions. The codebase
becomes fragmented, difficult to maintain, and
increasingly burdened by technical debt. Simple
parameter changes that a human would make to
a generalized function instead require complete
re-generation cycles.

WWW.0X.security

Y ox

The root of this behavior can be fraced back fo
the foundational training paradigms of current
GenAl models. These models are trained on
colossal datasets of existing code, where the
primary objective is to learn the statistical
relationships between input prompts and
corresponding functional code. The emphasis
during training is heavily placed on generating
correct and immediately functional code for
explicit requests. The models excel at pattern
recognition and replication within the bounds of
their training data. However, this process does
not inherently instill a deep understanding of the
transferable principles, abstract concepts, or
underlying architectural patterns that human

developers consciously employ for generalization.

The "why" behind the code — the design rationale
for reusability and scalability — is not explicitly
learned or prioritized in the same way as the

"what" (the functional output).

While GenAl rapidly solves well-defined, specific
problems, this limitation presents a significant
hurdle for complex, evolving systems that demand

adaptable and reusable codebases.

Next: The Return of the Monoliths |

Throwing Micro-Services Out the Window

OX | October2025 {9

https://www.ox.security/

The Return of the
Monoliths | Throwing

Micro-Services Out the
Window

Cluster: Code Architecture
& Design

Occurrence Rate: ~ Medium (40-50%)
The software industry spent the last decade moving
away from monolithic architectures - where Ul,
business logic, and data layers are tightly integrated
into a single unit - toward microservices. This shift
was driven by scalability demands and the need for
independent deployment of components.

Microservices allow large applications to be broken
into small, independent services, each handling a
specific business capability. The benefits are
significant: individual services can scale
independently, teams can deploy features without
rebuilding entire systems, and failures are isolated.
Monolithic architectures, by contrast, require
rebuilding and redeploying everything for any
change, creating deployment risks and slowing
development cycles.

Perfect! The review functionality has been successfully implemented and integrated
into the PawConnect dog walker app.

Here's a summary of what was accomplished:

Review System Implementation Complete
What was added:

1. Backend Components:

« lib/models/review.dart - Review data model with JSON serialization

« lib/services/review_service.dart - Business logic for review operations
» Review API endpoints in server.dart

N

. Frontend Components:

» Review submission modal in JavaScript

- Star rating UI components

» Review display functionality

« Enhanced CSS styling for review elements

w

. API Endpoints:

« POST /api/reviews - Create new review

« GET /api/reviews/walker/<walkerId> - Get reviews for a walker

« GET /api/reviews/stats/walker/<walkerId> - Get walker review statistics

« GET /api/reviews/owner/<ownerId> - Get reviews by owner

« GET /api/reviews/booking/<bookingId> - Get review for specific booking

« GET /api/reviews/can-review/<ownerId>/<bookingId> - Check review eligibility

GitHub Copilot summary of a coding assignment he received. Notice the
monolithic nature of the repo, combining Dart and JavaScript for
backend and frontend.

WWW.0X.security

Y ox

Al-generated code systematically reverses this
progress. By simplifying complex problems
and avoiding refactoring, Al coding agents
inadvertently trap development teams in
monolithic architectures - a serious concern
for any project requiring scalability.

Our experimentation with "vibe coding" a Dart web
application using GitHub Copilot demonstrated this
pattern clearly. Over several hours, the application
became remarkably feature-rich, but new features
progressively took longer to integrate. The Al coding
agent never suggested refactoring. The result: a
monolithic architecture where backend, frontend,
data access layer, and APl integrations were fightly
coupled within a single application.

A human developer would typically decompose such
a system into distinct microservices for better
modularity, scalability, and maintainability. While the
Al-generated version was fully functional end-to-
end, it presents significant challenges for future
development, debugging, and scaling due to its
tightly integrated structure.

Next: The Lie of Unit Test Code Coverage |
Quantity Does Not Equal Quality

OX | Ocfober 2025

https://www.ox.security/

The Lie of Unit Test Code Coverage |
Quantity Does Not Equal Quality

Cluster: Development Process

Occurrence Rate: ~ Medium (40-50%)

Unit test code coverage has become a standard metric for assessing software project
maturity. Open-source projects prominently display coverage percentages as proof of
reliability and trustworthiness. GenAl coding agents are specifically engineered to achieve
the highest possible coverage numbers, often highlighting these impressive figures in their
summary reports. The problem is: high coverage numbers don't guarantee quality,
security, or correct logic.

Coverage merely indicates that code was executed during testing - not that it was tested
meaningfully. The efficacy of unit tests depends entirely on the comprehensiveness of edge

cases and scenarios, not the percentage of lines executed.

GenAl's speed creates a deceptive advantage: it can rapidly generate massive quantities of
test code, inflating coverage metrics effortlessly. Human developers, constrained by time,
strategically focus testing efforts on critical, high-risk functionality. GenAl simply generates

volume.
We encountered JavaScript projects where test files outweighed code files by 10:1.

Upon examination, the tests were nonsensical. One striking example: tests that loaded the
code file as plain text and merely checked for the presence of a specific comment string.

While technically a "test," this provides zero assurance of correctness or reliability.

Such tests create false security, inflate project size, and shift focus from validating logic to

superficial content checks - ultimately undermining codebase integrity.

Next: Phantom Bugs | When Machines Experience "Skin-Crawling"

Vox WWW.OX.Security OX | October 2025

https://www.ox.security/

The Lie of Unit Test Code Coverage | Quantity Does Not Equal Quality

index.ts

import { drizzle } from "drizzle-orm/postgres-js";
import postgres from "postgres";
import env from "@/env";
import * as tables from "./tables";
import {
getConnectionConfig,
validateDatabaseConfig,
t from "@/lib/database/connection";

// Use unified database URL
const databaseUrl = env.DATABASE_URL;

// Get environment-appropriate connection
configuration
const connectionConfig = O;

// Validate and log configuration in development

if (process.env.NODE_ENV === "development") {
O;

¥

// Set up the SQL client with dynamic configuration
const sql = (databaseUrl, connectionConfig);

// Initialize the database with drizzle and schema
export const db = (sql, { schema: { ...tables
[N

// Export the sql client for direct queries if needed
export { sql %;

// Graceful shutdown function for cleanup
export const = async () => {
await sql. (§ timeout: 5 3%);

5

index.test.ts

import { describe, it, expect ¥ from "@jest/globals";
import fs from "fs";
import path from "path";

("Database Index Module", () => {
("Module Structure", () => {
("should exist as a TypeScript file with
proper exports", () => {
const dbPath = path. (__dirname,
"index.ts");

(£s. (dbPath)). (true);
const content = fs. (dbPath,
"utf8");

// Verify module structure

(content). ("export const
db");
(content). ("export § sql
£
(content). ("export const
closeDatabase");
B
("should have proper import structure", ()
=
const dbPath = path. (__dirname,
"index.ts");
const content = fs. (dbPath,
"utf8");

// Verify imports

(content). ('from "drizzle-
orm/postgres-js"');

(content). ('from
"postgres"');

(content). ('"from "@/
env"');

(content). ('"from "./
tables"');

(content). ('"from "@/1lib/
database/connection""');

)

("should have proper file structure with
comments", () => §

const dbPath = path. (__dirname,
"index.ts");

const content = fs. (dbPath,
"utf8");

// Verify proper structure

(content). ("// Use unified
database URL");
(content). ("// Get

environment-appropriate connection
configuration");

(content). ("// Validate and
log configuration in development");
(content). ("// Set up the

SQL client with dynamic configuration");
B
B
[3N

Ridiculously written unit test in an open-source
vibe-coded project.

OX | October 2025

https://www.ox.security/

B Phantom Bugs | When Machines
Experience "Skin-Crawling"

Cluster: Al-Specific Behaviors & Code Quality

Occurrence Rate: | Low (20-30%)

In the realm of artificial intelligence, particularly with GenAl, a curious phenomenon known as
"phantom bugs" has emerged, drawing a parallel to the medical term "formication." Formication is
a tactile hallucination where an individual experiences the sensation of insects crawling on or
under their skin, tingling, itching, or prickling, despite no actual insects being present, a
sensation often described as "skin-crawling." Similarly, GenAl, when generating code, can exhibit
a form of "hallucination" where it becomes overly concerned with handling theoretical or
extremely improbable edge cases that have little to no basis in real-world scenarios.

This type of hallucination is not unique to code generation; it has been well-documented in other
GenAl applications, such as image generation, where algorithms might create non-existent
features or illogical details, and in chatbots, which can sometimes invent facts or go off-topic.
The challenge of these "phantom bugs" has undeniably permeated the field of code
development by GenAl. When applications are constructed with such overly cautious and
sometimes baseless logic, the consequences can be significant. These include, but are not
limited to, substantial performance degradation due to unnecessary checks and overly complex

error handling, as well as an excessive consumption of computational resources.

The GenAl, in its attempt to be exhaustively robust, might infroduce code that,
while theoretically addressing every conceivable permutation, practically bloats the
application, slows its execution, and escalates its operational costs.

This highlights a critical area for improvement in GenAl's ability to discern relevant from irrelevant

complexity, ensuring its output is not just functional but also efficient and practical.

Vox WWW.OX.Security OX | October 2025

https://www.ox.security/

Vanilla Style | From
Scratch, Whether You

Like It or Not

Cluster: Code Architecture
& Design

Occurrence Rate: ~ Medium (40-50%)
Experienced developers instinctively leverage the
open-source community, searching for existing
libraries and solutions before building from
scratch. While this can create dependencies - as
the infamous npm left-pad incident demonstrated
(where the removal of a tiny, seemingly
insignificant package caused widespread
disruption across the JavaScript ecosystem) - it
generally accelerates development and leverages

battle-tested code.

GenAl agents take the opposite approach: they
default to "vanilla" implementations, building from
scratch rather than using existing packages or
official SDKs.

When tasked with integrating a SaaS API, a
GenAl agent typically implements the HTTP
request logic itself - crafting headers, handling
authentication, managing request bodies, and
parsing responses - rather than using the official
SDK or established client libraries.

This creates a complex
trade-off:

W Potential benefits:

» Leaner codebases with fewer dependencies
» Reduced supply chain security risks

» Greater control over integration logic

A Significant risks:

» Reinventing the wheel for common

functionality

» Reintroducing bugs and vulnerabilities

already solved in mature SDKs

» Missing community-tested edge cases and

best practices

» Verbose boilerplate that may not handle

errors, retries, or resource managemen‘r

properly

Official SDKs are maintained by experts,
thoroughly tested, and benefit from community
scrutiny. Custom implementations rarely match
this robustness. Understanding this fundamental
difference - Al's preference for self-
implementation over proven libraries- is crucial
for evaluating the architecture, security, and long-

term maintainability of Al-generated applications.

Next: Bugs Déja-Vu | Patch, Re-Patch, and Patch Again

WWW.0X.security

Y ox

OX | October 2025 15|

https://www.ox.security/

B) Bugs Déja-Vu | Patch, Re-Patch, and Patch Again

Cluster: Development Process
Occurrence Rate: [glielsNWOE:{0V)

One significant side effect of GenAl's tendency to avoid major refactoring efforts is its direct
violation of a fundamental software engineering principle: "Code Reuse." This principle dictates
that existing software components should be leveraged in new applications rather than being
rewritten from scratch. The practice of code reuse offers substantial benefits, including
considerable time savings during development, reduced overall development costs, and
enhanced software quality and reliability. These improvements stem from the utilization of
battle-tested solutions, such as established libraries, robust frameworks, and well-defined APIs.

This avoidance of code reuse in GenAl-generated code frequently leads to a
problematic phenomenon we term "Bugs déja-vu."

This occurs when the same bug, or a highly similar variant, recurs multiple times within the
same codebase. Because GenAl often produces redundant code rather than reusing existing,
proven solutions, each instance of a bug often requires separate, independent remediation.
This lack of centralized handling for recurring issues is inherently inefficient, consuming
valuable development resources and time. More critically, the repetitive encounter with the
same or similar defects can significantly degrade the user experience, leading to widespread
dissatisfaction and a perception of low software quality. The absence of a systematic
approach to common problems, due to the disregard for code reuse, creates a perpetual

cycle of reactive bug fixes rather than proactive and sustainable solutions.

Next: It Worked On My Machine Syndrome | Production is a Bitch

Vox WWW.OX.Security OX | October 2025 m

https://www.ox.security/

K} !t Worked On My
Machine Syndrome |
Production is a Bitch

Cluster: Development
Process

Occurrence Rate: ~ Medium (60-70%)
"It worked on my machine" is a classic refrain
among developers, highlighting a pervasive
challenge in software development: the disparity
between a local development environment and
target deployment environments. This common
expression encapsulates the frustration when
code functions flawlessly on a developer's
computer but fails catastrophically when moved
to a testing server, a staging environment, or,

worst of all, a production system.

The root causes of this discrepancy are
multifaceted. Often, it stems from subtle
differences in environmental configurations.

A developer's machine might have a specific
version of a library installed globally, while the
production server requires a different one, or
perhaps a critical environment variable is set
locally but missing in the deployment
environment. Missing dependencies are another
frequent culprit; a developer might have a
package installed that is assumed to be present
on the farget system but is not. Furthermore,
variations in operating system versions, differing
system paths, or even slightly varied hardware

specifications can introduce unforeseen issues.

This problem is particularly exacerbated with the
rise of coding agents. These Al-powered tools
typically operate within the confined scope of a
developer's Integrated Development Environment
(IDE) or Command Line Interface (CLI). While
incredibly powerful for generating, refactoring, and
debugging code within this isolated context, they
inherently lack awareness of the broader runtime
environment. They are not privy to the nuanced
configurations, specific constraints, or unique
dependencies of the target deployment
infrastructure. Consequently, the code they
generate, while syntactically correct and functionally
sound in the developer's immediate workspace,
may inadvertently infroduce "environmental bugs"

that only surface during deployment.

This fundamental limitation underscores the
continued importance of robust testing,
comprehensive environment management,
and a deep understanding of deployment
pipelines to bridge the gap between "it worked
on my machine" and reliable, production-
ready software.

Next: By-The-Book Fixation | Excellent Replicators, Terrible Innovators

WWW.0X.security

Y ox

OX | Ocfober 2025

https://www.ox.security/

By-The-Book Fixation |
Excellent Replicators,
Terrible Innovators

Cluster: Al-Specific
Behaviors & Code Quality

Occurrence Rate: [iglis]aNtsIoRI0M7]

GenAl has revolutionized software development
by producing code that inherently adheres to the
latest best practices. This includes a meticulous
application of modern syntax, extensive code
documentation, and the rigorous avoidance of
established anti-patterns. The output is typically
clean, readable, and aligned with current industry
standards, making it seemingly ideal for rapid
prototyping and efficient development cycles.
However, an intriguing paradox arises from this

adherence to "by-the-book" methodologies.

While general best practices are crucial for
maintainability and scalability, there are
instances where the most elegant and efficient
solution to a specific problem might deviate
from these widely accepted guidelines. For
example, a highly optimized algorithm might
employ a less common data structure or a more
intricate logical flow that, while perfectly sound,
might not be immediately recognizable as a "best
practice" by a broad audience or even by the
GenAl itself, which is trained on a vast corpus of

conventional code.

Without explicit instruction, GenAl coding agents
operate within their fixed guidelines, effectively
acting as highly proficient, yet strictly rule-bound,
programmers. Their training data reinforces

Vox WWW.OX.Security

patterns and conventions, making them excellent at
replicating what is commonly considered "good
code." This leads to a consistent output but can limit
their capacity for truly innovative or situationally
optimal solutions that might require a departure

from the norm.

The power and flexibility of GenAl are revealed
when specific directives are provided. When a
developer explicitly requests the coding agent to
"stray out of its fixed guidelines" or to prioritize a
specific performance metric over a conventional
best practice, the agent demonstrates a remarkable
ability to comply and adjust its output.

This impressive adaptability underscores
the potential for GenAl to go beyond
mere adherence to standards and to
become a tool for highly specialized and
optimized code generation, provided the
human developer offers the necessary
context and guidance to push beyond
the default best practices.

This collaborative approach, where human insight
guides Al's immense processing power, holds the
key to unlocking truly innovative and highly

effective software solutions.

Next: Anti-Patterns’ Occurrence Rates

OX | October2025 ()

https://www.ox.security/

Anti-Patterns’ Occurrence Rates

Anti-Pattern / Behavior

Comments Everywhere
Explaining the Obvious to Future Al

By-The-Book Fixation
Excellent Replicators, Terrible
Innovators

Avoidance of Refactors
The Missing 'Who Wrote This Sh*1?"
Reflex

Over-Specification
Dispose-After-Use Code

Bugs Déja-Vu
Patch, Re-Patch, and Patch Again

It Worked On My Machine
Syndrome
Production is a Bitch

Vanilla Style
From Scratch, Whether You Like It
or Not

The Return of the Monoliths
Throwing Micro-Services Out the
Window

The Lie of Unit Test Coverage
Quantity Does Not Equal Quality

Phantom Bugs
When Machines Experience "Skin-
Crawling"

WWW.OX.Security

Y ox

Cluster

Al-Specific Behaviors & Code Quality

Al-Specific Behaviors & Code Quality

Development Process

Code Architecture & Design

Development Process

Development Process

Code Architecture & Design

Code Architecture & Design

Development Process

Al-Specific Behaviors & Code Quality

Occurrence Rate

® Critical (90-100%)

® High (80-90%)

® High (80-90%)

® High (80-90%)

® High (70-80%)

Medium (60-70%)

Medium (40-50%)

Medium (40-50%)

Medium (40-50%)

® Low (20-30%)

Next: Anti-Patterns Vs Best Practices

OX | October 2025

https://www.ox.security/

Anti-Pattern

Comments
Everywhere | Note
to Future Al Self

Avoidance of
Refactors | Missing
'Who Wrote This?'
Reflex

Over-Specification |

Dispose-After-Use
Code

Return of Monoliths
| Throwing
Microservices Out

Unit Test Coverage
Lie | Quantity #
Quality

Phantom Bugs |
Machine "Skin-
Crawling"

Vanilla Style | No
Dependencies, No
Patches

Bugs Déja-Vu |
Patch, Re-patch,
Patch Again

"Worked on My
Machine" |
Production is a
Bitch

By-The-Book
Fixation | Excellent

Replicators, Terrible

Innovators

Y ox

WWW.OX.Security

Core Issue

Excessive inline
commenting
beyond human
norms

No instinctive
code
improvement
process

Hyper-specific
solutions lacking
generalization

Consolidated
structures over
distributed
architectures

High coverage
numbers,
questionable test
quality

Over-concern
with theoretical
edge cases

From-scratch
implementation
over library
usage

Recurring
identical bugs
across codebase

Dev environment
success,
production
failures

Strict adherence
to conventions
over optimal
solutions

Root Cause

Memory architecture
limitations; comments
as Al navigation
"breadcrumbs”

Focus on immediate
solutions vs. long-term
quality; lacks semantic
understanding

Training on pattern
replication vs. abstract
principles; knows
"what", not "why"

Problem simplification
+ refactoring
avoidance

Speed enables rapid
test generation; inflated
metrics

Al hallucination applied
to code complexity

Preference for bespoke
code vs. open-source
leverage

Lack of code reuse
leads to redundant
implementations

Limited awareness of
deployment
environments and
constraints

Training on
conventional patterns;
rule-bound
programming

Best Practice
Violated

Clean Code

Technical
Debt
Accumulation

Code
Reusability,
Abstraction

Maintainability

Meaningful
Testing

KISS (Keep it
simple,
Stupid)

Don't

Reinvent the
wheel

Code Reuse

Environment
Parity

Creative
Problem-
Solving

Anti-Patterns Vs Best Practices

Primary Impact

Internal Al tool, rather than
human documentation, reveals
model constraints

Technical debt accumulation;
missed optimization
opportunities

Fragmented codebase; difficult
maintenance and evolution

Compromised scalability and
modern architectural practices

False confidence; coverage
doesn't guarantee robustness

Performance degradation;
resource waste; bloated
applications

Positive: Reduced dependency
risks, leaner codebases
Negative: Reinventing wheels,
missing community-tested
solutions, potential security
vulnerabilities

Inefficient fixing cycles;
degraded user experience

Environmental bugs surface
only at deployment

Consistent but potentially
suboptimal results; requires
human guidance for innovation

OX | October 2025

https://www.ox.security/

Takeaways: What Does This Mean
for Al-Assisted Development?

GenAl is proving to be an excellent tool, effectively critical thinking, the ability to see the big picture,
serving as an army of gifted junior developers (not and long-term strategic thinking.

experienced software architects or product
) Models cannot perform product management work

managers). Indeed, all the drawbacks of Al coding) .)
o S - requirements management, client conversations,
highlighted in this research are analogous to) ,))
o understanding what's truly important - nor will they

challenges commonly faced by junior developers.) :)
decide the most appropriate architecture for us.

A fundamental principle in data science is They still lack the familiarity with the knowledge that
"garbage in, garbage out," emphasizing that the humans have accumulated from living in a four-
quality of input directly dictates the quality of dimensional world (where space and time matter).

tput: GenAl codi t f best wh
OUIpUT: TENAT COTing agents pertorm best when Developers need to make Al work effectively - every

given clear instructions, detailed requirements, o .
developer must transition from being a programmer

and a well-defined design. . . e .
d to becoming a software architect, thinking in entirely

Our research indicates that code generated new ways. You've essentially received a promotion

by Al agents is only as good as the and gained an army of junior developers to
instructions it receives - but most manage. Without proper orchestration of Al
organizations haven't developed best systems, we'll fail o achieve optimal results.
practices regarding the use of Al coding

tools within their environments. a The Critical Knowledge Gap:
Any organization that embraces GenAl coding What Bots Can't Find

while embedding this understanding within its

structure will achieve a significant leap forward in Currently, models have learned the world's
rapid application development. knowledge from open data on the internet -

they've read Wikipedia and Stack Overflow, social

As we examine the profile of Al coding emerging, .) .
P g 9ing networks, and after realizing this wasn't sufficient,

we arrive at these few takeaways: . T
y they began reading entire libraries.

The Great Developer Evolution: But they still have one huge gap when it comes

. to writing code: software architecture.
From Coder to Architect

Human knowledge of software architecture is

While models compete over who has the largest largely undocumented in publicly accessible
context window, the real human talent is the services. Without proper architectural work and
ability to think outside the context: Humans are orchestration, you'll get a product that looks good
less fixated than models, developers possess but will fail within a short fime.

Vox WWW.OX.Security OX | October 2025 m

https://www.ox.security/

Security Impact:

Insecure by Dumbness

Contrary to widespread assumptions, our
analysis reveals that Al-generated code does
not inherently contain a higher density of
obvious security vulnerabilities per line. The
ratio of vulnerabilities to code lines remains
remarkably similar between human-written and
Al-generated code. This finding challenges
the common perception that Al
automatically produces less secure software.

The fundamental distinction - and indeed the

greater security risk - lies not in the prevalence of

typical vulnerabilities like SQL injection, Cross-
Site Scripting, or Server-Side Request Forgery
within the code itself. Instead, it lies in a more
insidious shift: the evolution from trained
developers to non-technical users producing
applications using junior-level Al tools, without

corresponding expertise development.

The Core Security Risk

Today, people without cybersecurity knowledge
are developing and deploying to production
applications. Neither they nor the Al assistants
they rely on possess the knowledge to identify
what security measures to implement or how to

remediate vulnerabilities when they arise.

The resulting code is not insecure by
malpractice or by malicious intent, but rather
insecure by ignorance.

WWW.OX.Security

Y ox

This security gap is exponentially amplified by
Al's ability to accelerate development cycles. Al
tools effectively remove the natural human
bottlenecks that previously controlled the flow

of code reaching production.

n The “It Works” Trap

Al tools enable developers to create functional
applications with remarkable speed, fostering
false confidence in production readiness. This
phenomenon affects even experienced
developers - once they observe an application
running successfully, they often assume it's

ready for production deployment.

Yet critical security questions remain
unaddressed: How is authentication
implemented? What customer data is stored,
and how is it protected? Which endpoints are
exposed to the internet? What access controls
govern sensitive operations? Even seasoned
developers struggle to maintain security focus
during rapid development cycles, and non-
technical users of Al tools rarely consider these
questions at all.

The harsh reality is that no Al model
currently exists that consistently generates
code without security vulnerabilities. The
technology excels at creating functional
implementations but lacks the contextual
understanding necessary for
comprehensive security design.

OX | October 2025

https://www.ox.security/

The False Promise of
Code Review

Relying on human code review to catch Al-created
security issues represents a fundamentally flawed
strategy destined for failure. Code review is
inherently tedious work that drains focus, creates
mental fatigue, and inevitably leads to growing
backlogs. The human attention required for a thorough

security review cannot scale with Al's output velocity.

There's also the scale Mismatch & Missing Security
Intent: When people build entire applications from
single prompts, and security considerations rarely enter
the initial scope - review will not help anyone to fix a

rooft issue.

Takeaways:
Key Security Action ltems

-+ Abandon code review as a security strategy

Traditional review cannot scale with Al output velocity and lacks the critical

dialogue necessary for security insights.

-+ Develop organizational security instruction sets

Embed security guidelines directly into Al workflows rather than hoping to catch
issues lafer.

Vox WWW.OX.Security OX | October 2025

https://www.ox.security/

Conclusion:
Harness Human
Creativity, Execute
with Al Efficiency,

Strategic
Imperatives

n For Al-Coding Adoption

1. Embrace the Technology: Organizations

Secure at Scale

We are experiencing a period of hyper-growth

in Al capabilities: While we anticipate gradual

that fail to leverage GenAl will fall behind
competitively.

. Role Transformation: Position Al as

implementation support while humans

improvements in Al architectural

focus on:
understanding, the fundamental challenges
documented in this research will persist in the » Product management and requirements
near ferm. gathering

]) L « Architectural decisions and system design
The trajectory is clear: organizations that

structure themselves around Al handling Quality orchestration and strategic oversight

implementation while humans focus on 3. Human-Centric Innovation: Preserve

orchestration, architecture, and product human leadership for breakthrough

vision will see the most significant solutions. While Al excels at implementation,

productivity gains. human creativity and critical thinking remain
We foresee an explosion in security incidents !rrepIaC‘eabIe el evel, grebinel st g, eing
related to vibe-coding. As new Al-Native innovative challenges.
Security capabilities become standardized, . .
a For Al-Coding Security

organizations must adopt healthy Al-assisted

development practices.
1. Abandon Code Review as Your Primary

Security Layer: It won't scale to Al's output
speed and lacks the dialogue needed for real
insights.

2. Promptify Security Requirements: Build

security instruction sets into every Al workflow.

3. A need for Vibe-Security: Recognize the gap
in autonomous, Al-native security to keep up

with Al's coding velocity.

Vox WWW.OX.Security

OX | October 2025 m

https://www.ox.security/

Expert Perspectives:
Industry Voices on "Army of Juniors”

Chris Hughes
CEO & Co-Founder at Aquia

"The OX Security Army of Juniors report highlights the critical risks associated with widespread Al-
generated coding. On one hand, it is tempting for organizations to lean into Al coding tools in pursuit of
increased "productivity”, but it comes at the expense of secure code and sound engineering. As
developers continue to rapidly adopt Al-coding tools and practices, especially in the absence of
security-centric prompting and validation, the digital attack surface is poised for exponential growth like
never before. Al may have written the code, but humans are left to clean it up and secure it."

Francis Odum
Cybersecurity Researcher and Independent Analyst

"Fast code without a framework for thinking is just noise at scale. Without someone shaping the
architecture, Al-generated systems grow wide but not deep. We believe that High test coverage from
GenAl can mask shallow logic. The tests may pass, but they often prove that the code runs, not that it
handles reality. Quantity can give an illusion of quality unless paired with judgment. That's why OX's
approach of profiling Al-generated code to expose hidden anti-patterns is essential. It gives
teams the visibility they need to apply judgment before problems scale."

James Berthoty
Security Engineer and Industry Analyst

"This report does an excellent job covering the emerging risks of Al-generated code - from hygiene to
security. Many of these issues are shipping short-term features without long-term considerations, which is
exactly how the most severe security vulnerabilities are introduced. Without careful considerations,
guardrails, and application architecture, things can quickly go sideways for your business."

Vox www.ox.security OX | October 2025

https://www.ox.security/

Y OY.

0100000011010 10111001 001000

https://www.ox.security/

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	21
	22
	23
	24
	25
	26

